Hutchison Effect

Slow Bending Of Metals
Shredded Metal Structures
Fractured Metal Structures
Propulsion—Both Slow and Impulsive

Melting Without Heat
Metal Luminance Without Heat
EVO Strikes Abound in Sample
PHOTO EXAMPLES OF METAL SUBJECTED TO ELECTRICAL TREATMENT

by

JOHN HUTCHISON
ELECTRICALLY TREATED METAL BY HUTCHISON
CONCEPTION OF THE ARTIFICIALLY INITIATED COLLAPSE OF THE SUBSTANCE AND KEY RESULTS OF THE FIRST STAGE OF ITS EXPERIMENTAL IMPLEMENTATION

by

S.V. ADAMENKO

PROTON-21 ELECTRODYNAMICS LABORATORY

KYIV 2004
Adamenko Nuclear Conversion

Super-Heavy, Stable Isotope Generation
Wide Range of Isotopic Transmutations
High Energy Photons and Ions
Cobalt 60 Neutralization
Overall Energy Gain
ELECTRODE CONFIGURATION FOR ADAMENKO WORK
SEM OF COPPER ANODE SUBJECTED TO ELECTRICAL DISCHARGE
Copper target after the experiment, with traces of solidified silver-and-white “lava” on its “petals”, which had flowed out of the target center.
Target after experiment No. 2107. Material of both the target and the accumulating screen is copper (Cu 99.99 %). The method of investigation is X-ray electron probe microanalysis (REMMA102 device, element detection range: from Na to U).
Accumulating screen after experiment No. 2107. Material of both the target and the accumulating screen is copper (Cu 99.99 %). The method of investigation is X-ray electron probe microanalysis (REMMA102 device, element detection range: from Na to U).
Results of local analyses of the element composition in 277 copper (Cu mass. 99.99 %) accumulating screens, each of them was used in the experiment with copper target of the same purity. The method of investigation is X-ray electron probe microanalysis (REMMA102 device, element detection range: from B to U).
Table 1. *Decrease in the gamma-activity of 60Co after the experiment.*

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Decrease in the gamma-activity, %</th>
<th>Sample No.</th>
<th>Decrease in the gamma-activity, %</th>
<th>Sample No.</th>
<th>Decrease in the gamma-activity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2397</td>
<td>48</td>
<td>2479</td>
<td>2</td>
<td>2588</td>
<td>47</td>
</tr>
<tr>
<td>2398</td>
<td>11</td>
<td>2481</td>
<td>23</td>
<td>2600</td>
<td>33</td>
</tr>
<tr>
<td>2425</td>
<td>22</td>
<td>2534</td>
<td>30</td>
<td>2769</td>
<td>29</td>
</tr>
<tr>
<td>2426</td>
<td>17</td>
<td>2558</td>
<td>23</td>
<td>2770</td>
<td>36</td>
</tr>
</tbody>
</table>
LOW VOLTAGE
NUCLEAR TRANSMUTATION
WORK IN PROGRESS
(Completion expected by June 2004 if sponsor is found)
by
KEN SHOULDERs
Bodega, California
ION SOURCE

- Inserted electrode
- Silver coating
- Cavity
- Ion exit aperture
- Spherical pocket in ceramic
- Lapped surface
- Alumina substrates

0.1"
1. Three overlapping spectra of Titanium isotopes, shot into a target from an EV gun at time intervals of about 1 minute, produce distinctly different patterns due to the different abundance of isotopes on the target.

2. The data is collected as X-Y data using a Velleman PCS 500 digital oscilloscope.

3. The data is then processed by Excel to produce this chart.

4. Differences between the traces can be determined by using the math capability of Excel.
Thin streaks

Incoming EVOs

Edge View of Coated Aluminum Foil Being Struck by EVOs

Barely Visible Output From Pure Metal Strikes
Energy Release is Function of Proper EVO Loading
Thin, Fast Streaks Both Ways
A Propulsion Effect is Basis of Gain
Fig. 8 Front view of plasma plume with cover removed

Fig. 9 Side view of plasma plume with cover

Fig. 10 Plasma plume with apertures installed

EVO Plume Generator

Single Metal Strike Barely Visible

Dense Metal Plasma Strike 500 Times Brighter

Dual, Synchronized EVOs Produced Increased Brightness
Plasma Focus

Gigavolt Output For Kilovolt Input
Electron Cluster Generation Unrecognized
PF Commercially Available for Transmutation
Off-Axis Transmutation

Single EVO Capable of >50 KeV Output From 1 KeV Input (Superluminal Paper by KS)

PF Scaling Effects
Fig. 3

- Plasma focus chamber
- Energy storage capacitors
- High pressure gas inlet
- Low pressure gas line
- EV target
Cold Fusion

Thermal Cycling Method Has EVO Evidence
Gas Discharge Method Has EVO Evidence
Electrolytic Method Has EVO Evidence
Sonic Method Has EVO Evidence
Summary

All Listed Technologies Utilize EVOs as Base Technology

Thermal Output Capability Only by Destruction

Electrical Output Without Device Destruction

Notion of Proper Component Design as Gain Basis

With Proper Design, Hutchison Effect Could Function as Claimed at The Low Power Actually Used
THE ENERGETICS OF THESE TECHNOLOGIES ALL HAVE A COMMON BASIS IN ELECTRON CLUSTERING

PLASMA FOCUS
HUTCHISON EFFECT
ADAMENKO WORK
EVO ENERGY PRODUCTION & TRANSMUTATION
COLD FUSION
OUR NEXT ERA OF ENERGY HANGS IN THE BALANCE

WEIGH IT CAREFULLY